Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1926
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection by Subject "5g"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Exact Construction of Bs-Assisted Mscr Codes With Link Constraints(IEEE Communications Letters, 2021) Arslan, Şuayb ŞefikIt is clear that 5G network resources would be consumed by heavy data traffic owing to increased mobility, slicing, and layered/distributed storage system architecture. The problem is elevated when multiple node failures are repaired to address service quality requirements. Typical approaches include individual or cooperative data regeneration to efficiently utilize the available bandwidth. It is observed that storage systems of 5G and beyond technologies shall have a multi–layer architecture in which base stations (BS) would be present. Moreover, communication with each layer would be subject to various communication costs and link constraints. Under limited BS assistance and cooperation, the trade-off between storage per node and communication bandwidth has been established. In this trade–off, two operating points, namely minimum storage, and bandwidth regeneration are particularly important. In this study, we first identify the optimal number of BS use at the minimum storage regeneration point. An explicit code construction is provided subsequently for the exact minimum storage regeneration whereby each layer may help the repair process subject to a communication link constraint.Article Performance Maximization of Network Assisted Mobile Data Offloading With Opportunistic Device-To Communications(2018) Zeydan, Engin; Tan, A. SerdarMobile data traffic inside mobile operator's infrastructure is increasing exponentially every year. This increasing demand forces mobile network operators (MNOs) to seek for alternative communication methods in order to relieve the traffic load in base stations, especially in highly populated and crowded environments. Network assisted data offload and Device-to-Device(D2D) communications are two prominent methods to help MNOs solve this problem. In this study, a data offload framework is developed that incorporates network assisted multiple attribute decision making (MADM) for best network selection and D2D communications for exploiting user proximity in crowded environments. The performance of the framework is evaluated with simulation results as well as analytic solutions and performance bounds. The simulation results indicate the superiority of incorporating network-based information besides user-based information in offloading decisions and demonstrates the significant benefits of D2D communications when the density of D2D users is properly adjusted. The simulation results depict that up to 168% and 200% increase in user satisfaction and throughput can be achieved under high network load scenarios at optimal D2D density. (C) 2018 Elsevier B.V. All rights reserved.