Solving Xor In Spike Neural Network (SNN) With Component-off-the-shelf

dc.authorscopusid 59558677400
dc.authorscopusid 59558430500
dc.authorscopusid 59558304800
dc.authorscopusid 59558177200
dc.authorscopusid 36052413700
dc.contributor.author Cikikci, S.V.
dc.contributor.author Orek, E.
dc.contributor.author Ozgen, A.K.
dc.contributor.author Yavuz, A.
dc.contributor.author Ayhan, T.
dc.date.accessioned 2025-03-05T20:15:04Z
dc.date.available 2025-03-05T20:15:04Z
dc.date.issued 2024
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisligi Bölümü en_US
dc.description.PublishedMonth Temmuz en_US
dc.description.abstract This paper addresses the solution of the XOR problem with Spiking Neural Networks (SNN) in order to improve energy efficiency and computational performance as Moore's Law approaches its limits. SNN is capable of solving nonlinear problems while saving energy by mimicking the working principles of biological neurons. For this purpose, a SNN consisting of 12 neurons was implemented on a breadboard using the Leaky Integrate and Fire (LIF) model. In the input layer of the network, 50 Hz and 100 Hz signals are processed with frequency sensitive filters. With the help of bandpass and low-pass filters, additive and inverting operational amplifiers, the XOR problem is successfully solved. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/ELECO64362.2024.10847089
dc.identifier.isbn 9798331518035
dc.identifier.scopus 2-s2.0-85217883267
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/ELECO64362.2024.10847089
dc.identifier.uri https://hdl.handle.net/20.500.11779/2512
dc.identifier.wosquality N/A
dc.institutionauthor Çıkıkcı, Sevde Vuslat
dc.institutionauthor Örek, Eren
dc.institutionauthor Özgen, Ali Kağan
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Electrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings -- 2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024 -- 28 November 2024 through 30 November 2024 -- Bursa -- 206315 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Solving Xor In Spike Neural Network (SNN) With Component-off-the-shelf en_US
dc.title.alternative kullanima Hazir Bileşenlerle İǧnecikli Sinir Aǧinda Xor Çözülmesi en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1111.pdf
Size:
893.95 KB
Format:
Adobe Portable Document Format