A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels

dc.authorid Serap Kırbız / 0000-0001-7718-3683
dc.contributor.author Kırbız, Serap
dc.contributor.author Hızlı, Çağlar
dc.date.accessioned 2022-03-02T12:46:26Z
dc.date.available 2022-03-02T12:46:26Z
dc.date.issued 2022
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description.WoSDocumentType Article; Early Access
dc.description.WoSIndexDate 2022 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth Şubat en_US
dc.description.WoSYOKperiod YÖK - 2021-22 en_US
dc.description.abstract Although detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition. en_US
dc.description.woscitationindex Science Citation Index Expanded en_US
dc.identifier.citation Hızlı, Ç., & Kırbız, S. (January 2022). A Bayesian Allocation Model Based Approach to Mixed Membership Stochastic Blockmodels. Applied Artificial Intelligence, pp 1-23. DOI : https://doi.org/10.1080/08839514.2022.2032923 en_US
dc.identifier.doi 10.1080/08839514.2022.2032923
dc.identifier.endpage 23 en_US
dc.identifier.issn 1087-6545
dc.identifier.issn 0883-9514
dc.identifier.scopus 2-s2.0-85124183409
dc.identifier.scopusquality Q2
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1080/08839514.2022.2032923
dc.identifier.uri https://hdl.handle.net/20.500.11779/1747
dc.identifier.wos WOS:000750893600001
dc.identifier.wosquality Q2
dc.institutionauthor Kırbız, Serap
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.journal Applied Artificial Intelligence en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Community en_US
dc.subject Inference en_US
dc.title A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels en_US
dc.type Article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08839514.2022.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: