Improving Facial Emotion Recognition Through Dataset Merging and Balanced Training Strategies

dc.contributor.author Kirbiz, Serap
dc.date.accessioned 2025-05-05T19:42:52Z
dc.date.available 2025-05-05T19:42:52Z
dc.date.issued 2025
dc.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.PublishedMonth Mayıs en_US
dc.description.abstract In this paper, a deep learning framework is proposed for automatic facial emotion based on deep convolutional networks. In order to increase the generalization ability and the robustness of the method, the dataset size is increased by merging three publicly available facial emotion datasets: CK+, FER+ and KDEF. Despite the increase in dataset size, the minority classes still suffer from insufficient number of training samples, leading to data imbalance. The data imbalance problem is minimized by online and offline augmentation techniques and random weighted sampling. Experimental results demonstrate that the proposed method can recognize the seven basic emotions with 82% accuracy. The results demonstrate the effectiveness of the proposed approach in tackling the challenges of data imbalance and improving classification performance in facial emotion recognition. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.jfranklin.2025.107659
dc.identifier.issn 0016-0032
dc.identifier.issn 1879-2693
dc.identifier.issue 7 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.jfranklin.2025.107659
dc.identifier.uri https://hdl.handle.net/20.500.11779/2570
dc.identifier.volume 362 en_US
dc.identifier.wos WOS:001458635300001
dc.identifier.wosquality Q1
dc.institutionauthor Kırbız, Serap
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Facial Emotion Recognition en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Face Alignment en_US
dc.subject Data Augmentation en_US
dc.subject Facial Landmarks en_US
dc.subject Random Weighted Sampling en_US
dc.title Improving Facial Emotion Recognition Through Dataset Merging and Balanced Training Strategies en_US
dc.type Article en_US

Files