An Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learning

dc.authorid Yusuf Aydın / 0000-0002-4598-5558
dc.contributor.author Başdoğan, Çağatay
dc.contributor.author Niaz, P. Pouya
dc.contributor.author Aydın, Yusuf
dc.contributor.author Güler, Berk
dc.contributor.author Madani, Alireza
dc.date.accessioned 2022-06-22T08:03:47Z
dc.date.available 2022-06-22T08:03:47Z
dc.date.issued 2022
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description.PublishedMonth Ekim en_US
dc.description.WoSDocumentType Article
dc.description.WoSIndexDate 2022 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth Temmuz en_US
dc.description.WoSYOKperiod YÖK - 2021-22 en_US
dc.description.abstract In this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction between human and robot are adjusted adaptively in real time to make the robot more transparent to the operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12 participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to 20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude (i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed parameters. en_US
dc.description.woscitationindex Science Citation Index Expanded en_US
dc.identifier.citation Berk, G., Niaz, P. P., Madani, A., Aydın, Y., Basdogan, C.(October 2022). An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning. Mechatronics. pp. 1-14. en_US
dc.identifier.doi 10.1016/j.mechatronics.2022.102851
dc.identifier.endpage 14 en_US
dc.identifier.issn 0957-4158
dc.identifier.scopus 2-s2.0-85131730118
dc.identifier.scopusquality Q2
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.mechatronics.2022.102851
dc.identifier.uri https://hdl.handle.net/20.500.11779/1788
dc.identifier.volume 86 en_US
dc.identifier.wos WOS:000814216300006
dc.identifier.wosquality Q2
dc.institutionauthor Aydın, Yusuf
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.journal Mechatronics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Manufacturing en_US
dc.subject Deep learning en_US
dc.subject Human intention recognition en_US
dc.subject Subtask detection en_US
dc.subject Adaptive admittance control en_US
dc.subject Human–robot interaction en_US
dc.subject Collaborative drilling en_US
dc.title An Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learning en_US
dc.type Article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957415822000800-main.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: