An Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learning
dc.authorid | Yusuf Aydın / 0000-0002-4598-5558 | |
dc.contributor.author | Başdoğan, Çağatay | |
dc.contributor.author | Niaz, P. Pouya | |
dc.contributor.author | Aydın, Yusuf | |
dc.contributor.author | Güler, Berk | |
dc.contributor.author | Madani, Alireza | |
dc.date.accessioned | 2022-06-22T08:03:47Z | |
dc.date.available | 2022-06-22T08:03:47Z | |
dc.date.issued | 2022 | |
dc.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.PublishedMonth | Ekim | en_US |
dc.description.WoSDocumentType | Article | |
dc.description.WoSIndexDate | 2022 | en_US |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | en_US |
dc.description.WoSPublishedMonth | Temmuz | en_US |
dc.description.WoSYOKperiod | YÖK - 2021-22 | en_US |
dc.description.abstract | In this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction between human and robot are adjusted adaptively in real time to make the robot more transparent to the operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12 participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to 20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude (i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed parameters. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | en_US |
dc.identifier.citation | Berk, G., Niaz, P. P., Madani, A., Aydın, Y., Basdogan, C.(October 2022). An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning. Mechatronics. pp. 1-14. | en_US |
dc.identifier.doi | 10.1016/j.mechatronics.2022.102851 | |
dc.identifier.endpage | 14 | en_US |
dc.identifier.issn | 0957-4158 | |
dc.identifier.scopus | 2-s2.0-85131730118 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.mechatronics.2022.102851 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1788 | |
dc.identifier.volume | 86 | en_US |
dc.identifier.wos | WOS:000814216300006 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Aydın, Yusuf | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Mechatronics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Manufacturing | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Human intention recognition | en_US |
dc.subject | Subtask detection | en_US |
dc.subject | Adaptive admittance control | en_US |
dc.subject | Human–robot interaction | en_US |
dc.subject | Collaborative drilling | en_US |
dc.title | An Adaptive Admittance Controller for Collaborative Drilling With a Robot Based on Subtask Classification Via Deep Learning | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0957415822000800-main.pdf
- Size:
- 2.88 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Text - Article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: