Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem

dc.authorscopusid 24080435200
dc.authorscopusid 55573294200
dc.authorscopusid 6602279467
dc.authorwosid Guney, Evren/Ltc-9658-2024
dc.authorwosid Hanne, Thomas/I-1255-2012
dc.contributor.author Guney, Evren
dc.contributor.author Ehrenthal, Joachim
dc.contributor.author Hanne, Thomas
dc.date.accessioned 2025-04-05T20:57:43Z
dc.date.available 2025-04-05T20:57:43Z
dc.date.issued 2025
dc.department Mühendislik Fakültesi, Endüstri Mühendisligi Bölümü en_US
dc.description.PublishedMonth Mart en_US
dc.description.abstract The Multi-Knapsack Problem (MKP) is a fundamental challenge in operations research and combinatorial optimization. Quantum computing introduces new possibilities for solving MKP using Quadratic Unconstrained Binary Optimization (QUBO) models. However, a key challenge in QUBO formulations is the selection of penalty parameters, which directly influence solution feasibility and algorithm performance. In this work, we develop QUBO formulations for two MKP variants-the Multidimensional Knapsack Problem (MDKP) and the Multiple Knapsack Problem (MUKP)-and provide an algebraic characterization of their penalty parameters. We systematically evaluate their impact through quantum simulation experiments and compare the performance of the two leading quantum optimization approaches: Quantum Approximate Optimization Algorithm (QAOA) and quantum annealing, alongside a state-of-the-art classical solver. Our results indicate that while classical solvers remain superior, careful tuning of penalty parameters has a strong impact on quantum optimization outcomes. QAOA is highly sensitive to parameter choices, whereas quantum annealing produces more stable results on small to mid-sized instances. Further, our results reveal that MDKP instances can maintain feasibility at penalty values below theoretical bounds, while MUKP instances show greater sensitivity to penalty reductions. Finally, we outline directions for future research in solving MKP, including adaptive penalty parameter tuning, hybrid quantum-classical approaches, and practical optimization strategies for QAOA, as well as real-hardware evaluations. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) en_US
dc.description.sponsorship Evren Guney acknowledges the support of the Scientific and Technological Research Council of Turkiye (TUBITAK), which contributed to the development of this research en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1109/ACCESS.2025.3550788
dc.identifier.endpage 47098 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-105001091746
dc.identifier.scopusquality Q1
dc.identifier.startpage 47086 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2025.3550788
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:001448323100029
dc.identifier.wosquality Q2
dc.institutionauthor Güney, Evren
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Optimization en_US
dc.subject Quantum Computing en_US
dc.subject Logic Gates en_US
dc.subject Quantum Annealing en_US
dc.subject Annealing en_US
dc.subject Qubit en_US
dc.subject Noise en_US
dc.subject Approximation Algorithms en_US
dc.subject Tuning en_US
dc.subject Quantum State en_US
dc.subject Multi-Dimensional Knapsack Problem en_US
dc.subject Multiple Knapsack Problem en_US
dc.subject Quadratic Unconstrained Binary Optimization en_US
dc.subject Quantum Annealing en_US
dc.subject Quantum Approximate Optimization Algorithm en_US
dc.subject Penalty Parameters en_US
dc.title Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem en_US
dc.type Article en_US

Files