Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem
dc.authorscopusid | 24080435200 | |
dc.authorscopusid | 55573294200 | |
dc.authorscopusid | 6602279467 | |
dc.authorwosid | Guney, Evren/Ltc-9658-2024 | |
dc.authorwosid | Hanne, Thomas/I-1255-2012 | |
dc.contributor.author | Guney, Evren | |
dc.contributor.author | Ehrenthal, Joachim | |
dc.contributor.author | Hanne, Thomas | |
dc.date.accessioned | 2025-04-05T20:57:43Z | |
dc.date.available | 2025-04-05T20:57:43Z | |
dc.date.issued | 2025 | |
dc.department | Mühendislik Fakültesi, Endüstri Mühendisligi Bölümü | en_US |
dc.description.PublishedMonth | Mart | en_US |
dc.description.abstract | The Multi-Knapsack Problem (MKP) is a fundamental challenge in operations research and combinatorial optimization. Quantum computing introduces new possibilities for solving MKP using Quadratic Unconstrained Binary Optimization (QUBO) models. However, a key challenge in QUBO formulations is the selection of penalty parameters, which directly influence solution feasibility and algorithm performance. In this work, we develop QUBO formulations for two MKP variants-the Multidimensional Knapsack Problem (MDKP) and the Multiple Knapsack Problem (MUKP)-and provide an algebraic characterization of their penalty parameters. We systematically evaluate their impact through quantum simulation experiments and compare the performance of the two leading quantum optimization approaches: Quantum Approximate Optimization Algorithm (QAOA) and quantum annealing, alongside a state-of-the-art classical solver. Our results indicate that while classical solvers remain superior, careful tuning of penalty parameters has a strong impact on quantum optimization outcomes. QAOA is highly sensitive to parameter choices, whereas quantum annealing produces more stable results on small to mid-sized instances. Further, our results reveal that MDKP instances can maintain feasibility at penalty values below theoretical bounds, while MUKP instances show greater sensitivity to penalty reductions. Finally, we outline directions for future research in solving MKP, including adaptive penalty parameter tuning, hybrid quantum-classical approaches, and practical optimization strategies for QAOA, as well as real-hardware evaluations. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkiye (TUBITAK) | en_US |
dc.description.sponsorship | Evren Guney acknowledges the support of the Scientific and Technological Research Council of Turkiye (TUBITAK), which contributed to the development of this research | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1109/ACCESS.2025.3550788 | |
dc.identifier.endpage | 47098 | en_US |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-105001091746 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 47086 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ACCESS.2025.3550788 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:001448323100029 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Güney, Evren | |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Optimization | en_US |
dc.subject | Quantum Computing | en_US |
dc.subject | Logic Gates | en_US |
dc.subject | Quantum Annealing | en_US |
dc.subject | Annealing | en_US |
dc.subject | Qubit | en_US |
dc.subject | Noise | en_US |
dc.subject | Approximation Algorithms | en_US |
dc.subject | Tuning | en_US |
dc.subject | Quantum State | en_US |
dc.subject | Multi-Dimensional Knapsack Problem | en_US |
dc.subject | Multiple Knapsack Problem | en_US |
dc.subject | Quadratic Unconstrained Binary Optimization | en_US |
dc.subject | Quantum Annealing | en_US |
dc.subject | Quantum Approximate Optimization Algorithm | en_US |
dc.subject | Penalty Parameters | en_US |
dc.title | Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem | en_US |
dc.type | Article | en_US |