Adaptive Boosting of Dnn Ensembles for Brain-Computer Interface Spellers

dc.authorid Şuayb Şefik Arslan / 0000-0003-3779-0731
dc.authorid Şuayb Şefik Arslan / K-2883-2015
dc.contributor.author Çatak, Yiğit
dc.contributor.author Aksoy, Can
dc.contributor.author Özkan, Hüseyin
dc.contributor.author Güney, Osman Berke
dc.contributor.author Koç, Emirhan
dc.contributor.author Arslan, Şuayb Şefik
dc.date.accessioned 2021-08-24T10:32:42Z
dc.date.available 2021-08-24T10:32:42Z
dc.date.issued 2021
dc.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2022 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth Haziran en_US
dc.description.WoSYOKperiod YÖK - 2021-22 en_US
dc.description.abstract Steady-state visual evoked potentials (SSVEP) are commonly used in brain computer interface (BCI) applications such as spelling systems, due to their advantages over other paradigms. In this study, we develop a method for SSVEP-based BCI speller systems, using a known deep neural network (DNN), which includes transfer and ensemble learning techniques. We test performance of our method on publicly available benchmark and BETA datasets with leave-one-subject-out procedure. Our method consists of two stages. In the first stage, a global DNN is trained using data from all subjects except one subject that is excluded for testing. In the second stage, the global model is fine-tuned to each subject whose data are used in the training. Combining the responses of trained DNNs with different weights for each test subject, rather than an equal weight, provide better performance as brain signals may differ significantly between individuals. To this end, weights of DNNs are learnt with SAMME algorithm with using data belonging to the test subject. Our method significantly outperforms canonical correlation analysis (CCA) and filter bank canonical correlation analysis (FBCCA) methods. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science en_US
dc.identifier.citation Güney, O. B., Koç, E., Aksoy, C., Çatak, Y., Arslan, Ş. S., & Özkan, H. (9-11 June 2021). Adaptive Boosting of DNN Ensembles for Brain-Computer Interface Spellers. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). https://doi.org/10.1109/SIU53274.2021.9477841 en_US
dc.identifier.doi 10.1109/SIU53274.2021.9477841
dc.identifier.scopus 2-s2.0-85111422982
dc.identifier.scopusquality N/A
dc.identifier.startpage 1-4 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11779/1545
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9477841
dc.identifier.wos WOS:000808100700084
dc.identifier.wosquality N/A
dc.institutionauthor Arslan, Şuayb Şefik
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.journal 2021 29th Signal Processing and Communications Applications Conference (SIU) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Correlation en_US
dc.subject Brain-computer interfaces en_US
dc.subject Benchmark testing en_US
dc.subject Electroencephalography en_US
dc.subject Visualization en_US
dc.subject Boosting en_US
dc.subject Brain modeling en_US
dc.title Adaptive Boosting of Dnn Ensembles for Brain-Computer Interface Spellers en_US
dc.title.alternative DSA Topluluklarının Beyin-Bilgisayar Arayüzleri için Uyarlamalı Güçlendirilmesi en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Adaptive_Boosting_of_DNN_Ensembles_for_Brain-Computer_Interface_Spellers.pdf
Size:
584.79 KB
Format:
Adobe Portable Document Format
Description:
Proceeding papers

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: