Adaptive Boosting of Dnn Ensembles for Brain-Computer Interface Spellers
dc.authorid | Şuayb Şefik Arslan / 0000-0003-3779-0731 | |
dc.authorid | Şuayb Şefik Arslan / K-2883-2015 | |
dc.contributor.author | Çatak, Yiğit | |
dc.contributor.author | Aksoy, Can | |
dc.contributor.author | Özkan, Hüseyin | |
dc.contributor.author | Güney, Osman Berke | |
dc.contributor.author | Koç, Emirhan | |
dc.contributor.author | Arslan, Şuayb Şefik | |
dc.date.accessioned | 2021-08-24T10:32:42Z | |
dc.date.available | 2021-08-24T10:32:42Z | |
dc.date.issued | 2021 | |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSIndexDate | 2022 | en_US |
dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | en_US |
dc.description.WoSPublishedMonth | Haziran | en_US |
dc.description.WoSYOKperiod | YÖK - 2021-22 | en_US |
dc.description.abstract | Steady-state visual evoked potentials (SSVEP) are commonly used in brain computer interface (BCI) applications such as spelling systems, due to their advantages over other paradigms. In this study, we develop a method for SSVEP-based BCI speller systems, using a known deep neural network (DNN), which includes transfer and ensemble learning techniques. We test performance of our method on publicly available benchmark and BETA datasets with leave-one-subject-out procedure. Our method consists of two stages. In the first stage, a global DNN is trained using data from all subjects except one subject that is excluded for testing. In the second stage, the global model is fine-tuned to each subject whose data are used in the training. Combining the responses of trained DNNs with different weights for each test subject, rather than an equal weight, provide better performance as brain signals may differ significantly between individuals. To this end, weights of DNNs are learnt with SAMME algorithm with using data belonging to the test subject. Our method significantly outperforms canonical correlation analysis (CCA) and filter bank canonical correlation analysis (FBCCA) methods. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | en_US |
dc.identifier.citation | Güney, O. B., Koç, E., Aksoy, C., Çatak, Y., Arslan, Ş. S., & Özkan, H. (9-11 June 2021). Adaptive Boosting of DNN Ensembles for Brain-Computer Interface Spellers. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). https://doi.org/10.1109/SIU53274.2021.9477841 | en_US |
dc.identifier.doi | 10.1109/SIU53274.2021.9477841 | |
dc.identifier.scopus | 2-s2.0-85111422982 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1-4 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1545 | |
dc.identifier.uri | https://doi.org/10.1109/SIU53274.2021.9477841 | |
dc.identifier.wos | WOS:000808100700084 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Arslan, Şuayb Şefik | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.journal | 2021 29th Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Correlation | en_US |
dc.subject | Brain-computer interfaces | en_US |
dc.subject | Benchmark testing | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Visualization | en_US |
dc.subject | Boosting | en_US |
dc.subject | Brain modeling | en_US |
dc.title | Adaptive Boosting of Dnn Ensembles for Brain-Computer Interface Spellers | en_US |
dc.title.alternative | DSA Topluluklarının Beyin-Bilgisayar Arayüzleri için Uyarlamalı Güçlendirilmesi | en_US |
dc.type | Conference Object | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Adaptive_Boosting_of_DNN_Ensembles_for_Brain-Computer_Interface_Spellers.pdf
- Size:
- 584.79 KB
- Format:
- Adobe Portable Document Format
- Description:
- Proceeding papers
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: