Domain Adaptation Approaches for Acoustic Modeling

dc.authorid Ebru Arısoy / 0000-0002-8311-3611
dc.contributor.author Arısoy, Ebru
dc.contributor.author Fakhan, Enver
dc.date.accessioned 2021-10-09T07:19:14Z
dc.date.available 2021-10-09T07:19:14Z
dc.date.issued 2020
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2020 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth October en_US
dc.description.WoSYOKperiod YÖK - 2020-21 en_US
dc.description.abstract In the recent years, with the development of neural network based models, ASR systems have achieved a tremendous performance increase. However, this performance increase mostly depends on the amount of training data and the computational power. In a low-resource data scenario, publicly available datasets can be utilized to overcome data scarcity. Furthermore, using a pre-trained model and adapting it to the in-domain data can help with computational constraint. In this paper we have leveraged two different publicly available datasets and investigate various acoustic model adaptation approaches. We show that 4% word error rate can be achieved using a very limited in-domain data. en_US
dc.description.sponsorship Istanbul Medipol Univ en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science en_US
dc.identifier.citation E. Fakhan and E. Arısoy, (5-7 Oct. 2020). Domain Adaptation Approaches for Acoustic Modeling," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302343. en_US
dc.identifier.doi 10.1109/SIU49456.2020.9302343
dc.identifier.isbn 9781728172064
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85100309893
dc.identifier.scopusquality N/A
dc.identifier.startpage 1-4 en_US
dc.identifier.uri https://doi.org/10.1109/SIU49456.2020.9302343
dc.identifier.uri https://hdl.handle.net/20.500.11779/1568
dc.identifier.wos WOS:000653136100316
dc.identifier.wosquality N/A
dc.institutionauthor Arısoy, Ebru
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.journal 2020 28th Signal Processing and Communications Applications Conference (SIU) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Art en_US
dc.subject Akustik model uyarlama en_US
dc.subject Yapay sinir ağları en_US
dc.subject Training data en_US
dc.subject Otomatik konuşma tanıma en_US
dc.subject Transforms en_US
dc.subject Adaptation models en_US
dc.subject Data models en_US
dc.subject Computational modeling en_US
dc.subject Neural networks en_US
dc.title Domain Adaptation Approaches for Acoustic Modeling en_US
dc.title.alternative Akustik modelleme için alana uyarlama yaklaşımları en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Domain_Adaptation_Approaches_for_Acoustic_Modeling.pdf
Size:
503.49 KB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: