Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines

dc.authorid Tuna Çakar / 0000-0001-8594-7399
dc.contributor.author Çakar, Tuna
dc.contributor.author Savaş, Kerem
dc.contributor.author Battal, Eray
dc.contributor.author Özkan, Gözde
dc.date.accessioned 2024-01-25T08:13:44Z
dc.date.available 2024-01-25T08:13:44Z
dc.date.issued 2023
dc.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description Index Tarihi : 19 Ocak 2024 en_US
dc.description.PublishedMonth Kasım en_US
dc.description.abstract In this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively. en_US
dc.identifier.citation Battal, E., Ozkan, G., Savas, K., & Cakar, T. (2023). Fault detection model using measurement data in fiber optic internet lines. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp.1-4. en_US
dc.identifier.doi 10.1109/IISEC59749.2023.10391036
dc.identifier.endpage 4 en_US
dc.identifier.isbn 9798350318036
dc.identifier.scopus 2-s2.0-85184665277
dc.identifier.scopusquality N/A
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10391036
dc.identifier.uri https://hdl.handle.net/20.500.11779/2219
dc.identifier.wosquality N/A
dc.institutionauthor Çakar, Tuna
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.journal 2023 4th International Informatics and Software Engineering Conference en_US
dc.relation.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Random forest classifier en_US
dc.subject Time series en_US
dc.subject Fiber optic internet lines en_US
dc.subject Predictive maintenance en_US
dc.subject Machine learning en_US
dc.subject Anomaly detection en_US
dc.title Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
as323sadas_d23.pdf
Size:
3.33 MB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: