Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | |
dc.contributor.author | Çakar, Tuna | |
dc.contributor.author | Savaş, Kerem | |
dc.contributor.author | Battal, Eray | |
dc.contributor.author | Özkan, Gözde | |
dc.date.accessioned | 2024-01-25T08:13:44Z | |
dc.date.available | 2024-01-25T08:13:44Z | |
dc.date.issued | 2023 | |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | Index Tarihi : 19 Ocak 2024 | en_US |
dc.description.PublishedMonth | Kasım | en_US |
dc.description.abstract | In this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively. | en_US |
dc.identifier.citation | Battal, E., Ozkan, G., Savas, K., & Cakar, T. (2023). Fault detection model using measurement data in fiber optic internet lines. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp.1-4. | en_US |
dc.identifier.doi | 10.1109/IISEC59749.2023.10391036 | |
dc.identifier.endpage | 4 | en_US |
dc.identifier.isbn | 9798350318036 | |
dc.identifier.scopus | 2-s2.0-85184665277 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1109/IISEC59749.2023.10391036 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2219 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Çakar, Tuna | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.journal | 2023 4th International Informatics and Software Engineering Conference | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Random forest classifier | en_US |
dc.subject | Time series | en_US |
dc.subject | Fiber optic internet lines | en_US |
dc.subject | Predictive maintenance | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Anomaly detection | en_US |
dc.title | Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines | en_US |
dc.type | Conference Object | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- as323sadas_d23.pdf
- Size:
- 3.33 MB
- Format:
- Adobe Portable Document Format
- Description:
- Proceedings Paper
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: