Ad Click Prediction Using Machine Learning Algorithms

dc.contributor.advisor Hande Küçükaydın
dc.contributor.author Uncu, Nazlı Tuğçe
dc.date.accessioned 2021-12-14T11:21:14Z
dc.date.available 2021-12-14T11:21:14Z
dc.date.issued 2021
dc.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı en_US
dc.description.abstract Online advertising has a great potential to boost business’ revenue. One of the key metrics that defines the success of online ad campaigns is click through rate (CTR) which indicates the total number of clicks received in relation to the total impression. Therefore, the click prediction systems, which have the aim of increasing the click through rates of online advertising campaigns by predicting the clicks, have become essential for businesses. For this reason, predicting whether an advertisement will receive a click from the user or not attracts the attention of researchers from the both industry and academia. In this capstone project, the click prediction is studied by using Avazu’s click logs dataset. The effects of having high cardinality categorical features and imbalanced data are examined during data preprocessing phase and then relevant features are selected to be used in modeling. The methods that are used for this classification problem are decision trees, random forest, k-nearest neighbor, extreme gradient boosting, and logistic regression. According to the results of the study, extreme gradient boosting shows the best performance. en_US
dc.identifier.citation Uncu, N. T. (2021). Ad Click Prediction Using Machine Learning Algorithms. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-28 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1-28 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11779/1701
dc.identifier.wosquality N/A
dc.institutionauthor Uncu, Nazlı
dc.language.iso en en_US
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü en_US
dc.relation.publicationcategory YL-Bitirme Projesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Tıklama Tahminleme, Karar Ağacı, Rastgele Orman, k-En Yakın Komşuluk, Ekstrem Grandyan Artırma, Lojistik Regresyon en_US
dc.title Ad Click Prediction Using Machine Learning Algorithms en_US
dc.title.alternative Makine öğrenimi algoritmaları ile reklam tıklama tahminleme en_US
dc.type Master's Degree Project en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FBE_BüyükVeriAnalitiği_NazlıTuğçeUncu.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: