Audio Source Separation Using Variational Autoencoders and Weak Class Supervision

dc.authorid Ertuğ Karamatlı / 0000-0001-8839-0821
dc.authorid Serap Kırbız / 0000-0001-7718-3683
dc.contributor.author Kırbız, Serap
dc.contributor.author Karamatlı, Ertuğ
dc.contributor.author Cemgil, Ali Taylan
dc.date.accessioned 2019-08-23T05:48:05Z
dc.date.available 2019-08-23T05:48:05Z
dc.date.issued 2019
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description.WoSDocumentType Article
dc.description.WoSIndexDate 2019 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth Eylül en_US
dc.description.WoSYOKperiod YÖK - 2019-20 en_US
dc.description.abstract In this letter, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels for every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision. en_US
dc.description.woscitationindex Science Citation Index Expanded en_US
dc.identifier.citation Karamatli, E., Cemgil, AT., & Kırbız, S. (2019). Audio source separation using variational autoencoders and weak class supervision. IEEE Signal Processing Letters. 26(9), 1349-1353. en_US
dc.identifier.endpage 1353 en_US
dc.identifier.issn 1070-9908
dc.identifier.issn 1558-2361
dc.identifier.issue 9 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 1349 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11779/1128
dc.identifier.volume 26 en_US
dc.identifier.wos WOS:000480311900003
dc.identifier.wosquality Q2
dc.institutionauthor Kırbız, Serap
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en_US
dc.relation.ispartof IEEE Signal Processing Letters en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Weak supervision en_US
dc.subject Source separation en_US
dc.subject Variational autoencoders en_US
dc.title Audio Source Separation Using Variational Autoencoders and Weak Class Supervision en_US
dc.type Article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
08769885.pdf
Size:
506.35 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü - Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: