A Framework for Automatic Generation of Spoken Question-Answering Data

dc.contributor.author Manav, Y.
dc.contributor.author Menevşe, M.Ü.
dc.contributor.author Özgür, A.
dc.contributor.author Arısoy, Ebru
dc.date.accessioned 2023-10-18T12:13:23Z
dc.date.available 2023-10-18T12:13:23Z
dc.date.issued 2022
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisligi Bölümü en_US
dc.description The authors would like to thank Şeniz Demir for providing the Turkish Wikipedia dataset, Emrah Budur for providing the English to Turkish machine translated SQuAD dataset and the anonymous reviewers for their valuable feedback. en_US
dc.description.abstract This paper describes a framework to automatically generate a spoken question answering (QA) dataset. The framework consists of a question generation (QG) module to generate questions automatically from given text documents, a text-to-speech (TTS) module to convert the text documents into spoken form and an automatic speech recognition (ASR) module to transcribe the spoken content. The final dataset contains question-answer pairs for both the reference text and ASR transcriptions as well as the audio files corresponding to each reference text. For QG and ASR systems we used pre-trained multilingual encoder-decoder transformer models and fine-tuned these models using a limited amount of manually generated QA data and TTS-based speech data, respectively. As a proof of concept, we investigated the proposed framework for Turkish and generated the Turkish Question Answering (TurQuAse) dataset using Wikipedia articles. Manual evaluation of the automatically generated question-answer pairs and QA performance evaluation with state-of-the-art models on TurQuAse show that the proposed framework is efficient for automatically generating spoken QA datasets. To the best of our knowledge, TurQuAse is the first publicly available spoken question answering dataset for Turkish. The proposed framework can be easily extended to other languages where a limited amount of QA data is available. © 2022 Association for Computational Linguistics. en_US
dc.identifier.citation Menevşe, M. Ü., Manav, Y., Arisoy, E., & Özgür, A. (2022, December). A Framework for Automatic Generation of Spoken Question-Answering Data. In Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 4659-4666). en_US
dc.identifier.endpage 4695 en_US
dc.identifier.scopus 2-s2.0-85149897199
dc.identifier.scopusquality N/A
dc.identifier.startpage 4688 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11779/1998
dc.identifier.wosquality N/A
dc.institutionauthor Arısoy, Ebru
dc.language.iso en en_US
dc.publisher Association for Computational Linguistics (ACL) en_US
dc.relation.journal 2022 Findings of the Association for Computational Linguistics: EMNLP 2022 -- 7 December 2022 through 11 December 2022 -- 186900 en_US
dc.relation.journal Findings of the Association for Computational Linguistics: EMNLP 2022 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Speech module en_US
dc.subject Turkishs en_US
dc.subject Speech-recognition modules en_US
dc.subject Question-answer pairs en_US
dc.subject Question answering en_US
dc.subject Speech recognition en_US
dc.subject Computational linguistics en_US
dc.subject Audio files en_US
dc.subject Text to speech en_US
dc.subject Automatic speech recognition en_US
dc.subject Text document en_US
dc.subject Character recognition en_US
dc.subject Automatic generation en_US
dc.title A Framework for Automatic Generation of Spoken Question-Answering Data en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2022.findings-emnlp.342.pdf
Size:
178.7 KB
Format:
Adobe Portable Document Format
Description:
Full Text- Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: