Detecting Autism From Head Movements Using Kinesics
No Thumbnail Available
Date
2024
Authors
Gokmen, Muhittin
Journal Title
Journal ISSN
Volume Title
Publisher
Assoc Computing Machinery
Abstract
Head movements play a crucial role in social interactions. The quantification of communicative movements such as nodding, shaking, orienting, and backchanneling is significant in behavioral and mental health research. However, automated localization of such head movements within videos remains challenging in computer vision due to their arbitrary start and end times, durations, and frequencies. In this work, we introduce a novel and efficient coding system for head movements, grounded in Birdwhistell's kinesics theory, to automatically identify basic head motion units such as nodding and shaking. Our approach first defines the smallest unit of head movement, termed kine, based on the anatomical constraints of the neck and head. We then quantify the location, magnitude, and duration of kines within each angular component of head movement. Through defining possible combinations of identified kines, we define a higher-level construct, kineme, which corresponds to basic head motion units such as nodding and shaking. We validate the proposed framework by predicting autism spectrum disorder (ASD) diagnosis from video recordings of interacting partners. We show that the multi-scale property of the proposed framework provides a significant advantage, as collapsing behavior across temporal scales reduces performance consistently. Finally, we incorporate another fundamental behavioral modality, namely speech, and show that distinguishing between speaking- and listening-time head movements significantly improves ASD classification performance.
Description
Yankowitz, Lisa/0000-0003-2604-5840; Gokmen, Muhittin/0000-0001-7290-199X; Schultz, Robert/0000-0001-9817-3425; Zampella, Casey/0000-0002-7973-8520
Keywords
Movements, Kinesics, Computer Vision, Psychology, Autism
Turkish CoHE Thesis Center URL
Citation
WoS Q
N/A
Scopus Q
N/A
Source
Companion International Conference on Multimodal Interaction -- NOV 04-08, 2024 -- San Jose, COSTA RICA
Volume
Issue
Start Page
350
End Page
354