A Decade of Discriminative Language Modeling for Automatic Speech Recognition

dc.authorid Ebru Arısoy / 0000-0002-8311-3611
dc.contributor.author Arısoy, Ebru
dc.contributor.author Saraçlar, Murat
dc.contributor.author Dikici, Erinc
dc.date.accessioned 2019-02-28T13:04:26Z
dc.date.accessioned 2019-02-28T11:08:16Z
dc.date.available 2019-02-28T13:04:26Z
dc.date.available 2019-02-28T11:08:16Z
dc.date.issued 2015
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description ##nofulltext## en_US
dc.description Ebru Arısoy (MEF Author) en_US
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2015 en_US
dc.description.WoSPublishedMonth Eylül en_US
dc.description.WoSYOKperiod YÖK - 2015-16 en_US
dc.description.abstract This paper summarizes the research on discriminative language modeling focusing on its application to automatic speech recognition (ASR). A discriminative language model (DLM) is typically a linear or log-linear model consisting of a weight vector associated with a feature vector representation of a sentence. This flexible representation can include linguistically and statistically motivated features that incorporate morphological and syntactic information. At test time, DLMs are used to rerank the output of an ASR system, represented as an N-best list or lattice. During training, both negative and positive examples are used with the aim of directly optimizing the error rate. Various machine learning methods, including the structured perceptron, large margin methods and maximum regularized conditional log-likelihood, have been used for estimating the parameters of DLMs. Typically positive examples for DLM training come from the manual transcriptions of acoustic data while the negative examples are obtained by processing the same acoustic data with an ASR system. Recent research generalizes DLM training by either using automatic transcriptions for the positive examples or simulating the negative examples. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science en_US
dc.identifier.citation Saraclar, M., Dikici, E., & Arisoy, E. (SEP 20-24, 2015). A Decade of Discriminative Language Modeling for Automatic Speech Recognition. 17th International Conference on Speech and Computer (SPECOM) Location: Athens, GREECE. 9319. p. 11-22. en_US
dc.identifier.doi 10.1007/978-3-319-23132-7_2
dc.identifier.endpage 22 en_US
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-84945969170
dc.identifier.scopusquality Q3
dc.identifier.startpage 11 en_US
dc.identifier.uri https://hdl.handle.net/20.500.11779/648
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-23132-7_2
dc.identifier.volume 9319 en_US
dc.identifier.wos WOS:000365866300002
dc.identifier.wosquality N/A
dc.institutionauthor Arısoy, Ebru
dc.language.iso en en_US
dc.relation.ispartof Conference: Speech And Computer (Specom 2015), 17th International Conference on Speech and Computer (SPECOM) Location: Athens, GREECE Date: SEP 20-24, 2015 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Discriminative training en_US
dc.subject Language modeling en_US
dc.subject Automatic speech recognition en_US
dc.title A Decade of Discriminative Language Modeling for Automatic Speech Recognition en_US
dc.type Conference Object en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: