Compositional Neural Network Language Models for Agglutinative Languages

Loading...
Thumbnail Image

Date

2016

Authors

Arısoy, Ebru

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Continuous space language models (CSLMs) have been proven to be successful in speech recognition. With proper training of the word embeddings, words that are semantically or syntactically related are expected to be mapped to nearby locations in the continuous space. In agglutinative languages, words are made up of concatenation of stems and suffixes and, as a result, compositional modeling is important. However, when trained on word tokens, CSLMs do not explicitly consider this structure. In this paper, we explore compositional modeling of stems and suffixes in a long short-term memory neural network language model. Our proposed models jointly learn distributed representations for stems and endings (concatenation of suffixes) and predict the probability for stem and ending sequences. Experiments on the Turkish Broadcast news transcription task show that further gains on top of a state-of-theart stem-ending-based n-gram language model can be obtained with the proposed models.

Description

Ebru Arısoy (MEF Author)

Keywords

Agglutinative languages, Sub-word-based language modeling, Long short-term memory, Language modeling, Author information

Turkish CoHE Thesis Center URL

Citation

Arisoy, E., Saraclar, M., Compositional Neural Network Language Models for Agglutinative Languages. p. 3494-3498.

WoS Q

N/A

Scopus Q

N/A

Source

Conference: 17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016) Location: San Francisco, CA Date: SEP 08-12, 2016

Volume

Issue

Start Page

3494

End Page

3498