Compositional Neural Network Language Models for Agglutinative Languages

dc.authorid Ebru Arısoy / 0000-0002-8311-3611
dc.contributor.author Saraçlar, Murat
dc.contributor.author Arısoy, Ebru
dc.date.accessioned 2019-02-28T13:04:26Z
dc.date.accessioned 2019-02-28T11:08:18Z
dc.date.available 2019-02-28T13:04:26Z
dc.date.available 2019-02-28T11:08:18Z
dc.date.issued 2016
dc.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
dc.description Ebru Arısoy (MEF Author) en_US
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2016 en_US
dc.description.WoSPublishedMonth Eylül en_US
dc.description.WoSYOKperiod YÖK - 2016-17 en_US
dc.description.abstract Continuous space language models (CSLMs) have been proven to be successful in speech recognition. With proper training of the word embeddings, words that are semantically or syntactically related are expected to be mapped to nearby locations in the continuous space. In agglutinative languages, words are made up of concatenation of stems and suffixes and, as a result, compositional modeling is important. However, when trained on word tokens, CSLMs do not explicitly consider this structure. In this paper, we explore compositional modeling of stems and suffixes in a long short-term memory neural network language model. Our proposed models jointly learn distributed representations for stems and endings (concatenation of suffixes) and predict the probability for stem and ending sequences. Experiments on the Turkish Broadcast news transcription task show that further gains on top of a state-of-theart stem-ending-based n-gram language model can be obtained with the proposed models. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities en_US
dc.identifier.citation Arisoy, E., Saraclar, M., Compositional Neural Network Language Models for Agglutinative Languages. p. 3494-3498. en_US
dc.identifier.doi 10.21437/Interspeech.2016-1239
dc.identifier.endpage 3498 en_US
dc.identifier.issn 2308-457X
dc.identifier.scopus 2-s2.0-84994336850
dc.identifier.scopusquality N/A
dc.identifier.startpage 3494 en_US
dc.identifier.uri http://dx.doi.org/10.21437/Interspeech.2016-1239
dc.identifier.uri https://hdl.handle.net/20.500.11779/686
dc.identifier.wos WOS:000409394402080
dc.identifier.wosquality N/A
dc.institutionauthor Arısoy, Ebru
dc.language.iso en en_US
dc.relation.ispartof Conference: 17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016) Location: San Francisco, CA Date: SEP 08-12, 2016 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Agglutinative languages en_US
dc.subject Sub-word-based language modeling en_US
dc.subject Long short-term memory en_US
dc.subject Language modeling en_US
dc.subject Author information en_US
dc.title Compositional Neural Network Language Models for Agglutinative Languages en_US
dc.type Conference Object en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Compositional Neural Network Language Models for Agglutinative Languages.PDF
Size:
367.92 KB
Format:
Adobe Portable Document Format
Description:
Konferans Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: