Consumer Loans' First Payment Default Detection: a Predictive Model

dc.authorid Utku Koç / 0000-0001-6699-6195
dc.contributor.author Sevgili, Türkan
dc.contributor.author Koç, Utku
dc.date.accessioned 2020-02-28T11:25:13Z
dc.date.available 2020-02-28T11:25:13Z
dc.date.issued 2020
dc.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.WoSDocumentType Article
dc.description.WoSIndexDate 2020 en_US
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR en_US
dc.description.WoSPublishedMonth Ocak en_US
dc.description.WoSYOKperiod YÖK - 2019-20 en_US
dc.description.abstract A default loan (also called nonperforming loan) occurs when there is a failure to meet bank conditions and repayment cannot be made in accordance with the terms of the loan which has reached its maturity. In this study, we provide a predictive analysis of the consumer behavior concerning a loan’s first payment default (FPD) using a real dataset of consumer loans with approximately 600,000 records from a bank. We use logistic regression, naive Bayes, support vector machine, and random forest on oversampled and undersampled data to build eight different models to predict FPD loans. A two-class random forest using undersampling yielded more than 86% on all performance measures: accuracy, precision, recall, and F1-score. The corresponding scores are even as high as 96% for oversampling. However, when tested on the real and balanced dataset, the performance of oversampling deteriorates as generating synthetic data for an extremely imbalanced dataset harms the training procedure of the algorithms. The study also provides an understanding of the reasons for nonperforming loans and helps to manage credit risks more consciously. en_US
dc.description.woscitationindex Science Citation Index Expanded en_US
dc.identifier.citation Koç, U., Sevgili, T. ( January 27, 2020). Consumer loans’ first payment default detection: a predictive model. Turkish Journal of Electrical Engineering & Computer Sciences, 28 (1), 167-181. DOI: https://doi.org/10.3906/elk-1809-190 en_US
dc.identifier.doi 10.3906/elk-1809-190
dc.identifier.endpage 181 en_US
dc.identifier.issn 1300-0632
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85079890925
dc.identifier.scopusquality Q3
dc.identifier.startpage 167 en_US
dc.identifier.trdizinid 334568
dc.identifier.uri https://doi.org/10.3906/elk-1809-190
dc.identifier.uri https://hdl.handle.net/20.500.11779/1310
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000510459900012
dc.identifier.wosquality Q4
dc.institutionauthor Koç, Utku
dc.language.iso en en_US
dc.publisher TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering & Computer Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Imbalanced class problem en_US
dc.subject Default loan en_US
dc.subject Undersampling en_US
dc.subject Machine learning en_US
dc.subject First payment default en_US
dc.subject Oversampling en_US
dc.title Consumer Loans' First Payment Default Detection: a Predictive Model en_US
dc.type Article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Consumer loans.pdf
Size:
822.24 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü_Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: